poupança grão

Já escrevi um artigo ensinando como perguntar taxas, veja cá. Recomendo que você estude o andamento de cada investimento de antemão de tomar qualquer decisão. Leandro Ávila é educador financeiro formado em gestão de empresas e especializado em investimentos.

Ninguém contrata absolutamente ninguém que não seja capaz de produzir riquezas suficientes para indemnizar o pagamento de um salário de R$ 880,00. O resultado é que apenas os mais qualificados conseguem trabalho.

/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxAQEBUQDxEVEBUQFRYPEBAQEBYQFRYWGBIXFhUVFRUYHSghGBolHRcVITEiJikrLi4uFx8zODMsNygtLisBCgoKDg0OGhAQGi0mHR8rLS0rKy0tLS0tLS0tLSstLS0tKy0tLS0tLS0tKy0tLS0rLS0tLS0rLS0tLS0rLS0tLf/AABEIANwA5QMBEQACEQEDEQH/xAAcAAEAAgMBAQEAAAAAAAAAAAAABgcBBQgEAgP/xABIEAABAwICBAYLDwQCAwAAAAABAAIDBBEFIQYHEjETIkFRYdIWMjRVcXJzkZSxsggUFyMzNUJSVHSBoaOzwSRik9EVQ1OS8f/EABsBAQACAwEBAAAAAAAAAAAAAAABAgQFBgMH/8QALxEBAAEDAwIEBQQCAwAAAAAAAAECAxEEBSESMQYyQXEzNFFhgRQiNUITI5Ghwf/aAAwDAQACEQMRAD8AvFAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEEf7N8J740npUXWQOzfCe+NJ6VF1kDs3wnvjSelRdZA7N8J740npUXWQOzfCe+NJ6VF1kDs3wnvjSelRdZA7N8J740npUXWQOzfCe+NJ6VF1kDs3wnvjSelRdZA7N8J740npUXWQOzfCe+NJ6VF1kDs3wnvjSelRdZA7N8J740npUXWQOzfCe+NJ6VF1kDs3wnvjSelRdZB7qTH6OVofFUxSNJsHRyNeCb2sCCrRRVMZiGNc1li3X0VVxE/TPLYgqrJyyg8GJ41S0oBqZ44A7cZpGxg+AuKLRRVMTMRxDXdm+E98aT0qLrIqdm+E98aT0qLrIHZvhPfGk9Ki6yB2b4T3xpPSousgdm+E98aT0qLrIHZvhPfGk9Ki6yB2b4T3xpPSousgdm+E98aT0qLrIHZvhPfGk9Ki6yB2b4T3xpPSousg5JRYQEBAQEBAQEBAQEBAQEwLo1Z9ww+O79xbKx8JwO7/AMjHvC649wWunu7qjyw+1CzX43g0FZC6CojEjHCxB3jpaeQovRcqon9sufdMdU9XRvLqb+phJuz6MjRzOG4+EK9NGezDu6qm1V+9BajDKiO/CQyMtvuwhRNFUei9GqtV+WqHlVWQICAgxcbkGNoc6IZ2hzoAKJZQEBAQEBAQEBAQEBARAgIldGrTuGDx3fuLZWPhOA3f+Rj3hdke5a6e7uqPLD6ULiD4ljDhYi4PIQpiZjspXRTXHTVGYRXSvRyI0s5YSz4qTIZjtDyL3jUVTGJa21sNmvU0zRMxy5mxHCjA0OLg6+W6yx85dfuO0To6Iqmru16NOICC5sFiw+LCqGhqmRyTYnE4Mi97bUpfU1AEM/D/AEGxtJyvc5W3ZlUvr8OpH1sOzSxy8C2srGSw0kYGzE33uabZ/wC14fJtZ2za2yD5jwGhkqpxLBAS91JSsaxjGGWeCF9Y4PAFo3OGyHAXu1oB32Ac8YzWyT1Es0rGxve8l0bGCNrLG2wGjcGgAfhnmi0PGgICAgICAgICAgIPqONzjssBcTuDQSfMFMRM9laq6aYzVLeUmh2ISC4py0HlkIZ+RN16xYrn0a27u+ltzia37Veg9dEx0jmM2WAudaQEgAXOSmrT10xmYUtb3pblXRTPKNheH2bfK6NWfcMPju9tbKx8JwO7fyMe8LsZuWunu7mjywjWnWPS0MMc0QDryBj2u5W2NxfkUS221aGnWXZtzOOHzo/p1R1Vm7Yhk5YpSGn8DuKZhGs2q/p6pjGfZJ2uBzGaNbPHdrtJD/ST+Sf7JSGRo/j0e8OX9J/k2eH+FWO7r/EvwaUcVnFCAg/T3xJdruEfeMBsbtt12Abgw34oHMEH6x4jO3tZ5W2vbZmeO2N3bjynM85RD84quVvayvbZ3CDZkc2zyLF+R7a1xfeg/NziSSSSSbkk3JJ3knlKJYQEBAQEBAQEBATAk2ieh8taeEfeKEHN9s3dDB/KyLNia+fRpdz3i3pKemOavotbA8AgpwGU0Iv9a2089Jcs+KLduHF3dVq9dc7zP2hLKTRmR2cjgzoGZXjXrIjiG20vhu5Vibs4Mf0bhbRz32nfFP8ApW+iVj1amuqMOh23w9pqb9GeeYc343h0cTWuZcXNjn0LFiZy7retttaWimq36rQ1Z9wweOf3FtLHwpfHt2/ko94XYzcFrJ7u6o8sINre7kj8sPZKS6Tw181Ps58xyoeyou1xGQ3KIjhfedTcs6zNEtxg2ntXAABNIwD6rrj/ANXXCREqWty0t3jUW490kOs2pljdE6oa4PaWODowDYixzCcs6xa2qa4rpnEwhekc7HMbsuDs+Q35FEQeIdTau2qYonKPqzkBEiAgICAgICAgICAgICAphDfaGYAa2o2XX4OPjykc3I0dJXtZt9dTV7tr40lmZjzT2XlheHbZbDE0Na0ACwsGgLY11026XC6bTXtfe79+8pxh2GsgbZoz5XcpWruXZrnl3ui2+1paIppjn6vavNsGr0mcPec+f/U/2SjK0cT+oo94cw6T/Js8P8Ksd3WeJfg0rF1Z9wweOfbW2sfCl8N3f+Rj3hdjNy1c93c0eWEG1u9yR+VHslJ7Ol8M/NT7Od9Ivlz4oSns8/EPzX4axGjEBDIgICAgICAgICAgICAgICAgubQDDBBRMJHGm+Nfz59qPMttp6eijL53vmqm/qpojtHC28Bw/gohccZ2bv8ASwNRcmup1ez6GNNYj6y+8fxiKjgdNKcm5ADe53I0dK8W/wBJpa9Tdi3QprHtM6yqJvKYY+SON2xYf3OGZKp1O70my6XTUZrjM+syis+k+wSOHldfJwbI4gjmOeanl439y261VjpjP2hosbxGOZjQy+Rubi3IoiGn3nc7Ort0xbWhq07hg8d3tra2PhPj27c7jHvC7GblrZ7u6o8sILrd7jj8sPZKiezpPDXzU+znnSL5c+AJT2efiH5r8NWjRiAgICAgICAgICAgICAgICAg+o23cBzkDzlTTzKlycUzP2dIaP0oMkUfI0Ny6GhbW5V023znRWv8+v8AysMBamX0aIwqXW3XudUxwX4sbOEI53OJF/MPzUVO18M6emLdV2e6ncexAucY2mzW5OtylTEYYW+7nVXcmzbniO7TJMuZESujVp3DB459tbOx8JwO6/yMe8LsZuWtnu7mjywgut7uOPyo9kqJ7Ol8NfNT7OedIvlz4oSns8/EPzX4atGjEBAQEBAQEBAQEBAQEBAQEBB9Rus4HmIPmN1NPeFK4zTMfZ01oe4OlY7nj2h+IC2Oon/W4fZaca6qJ+6crWu5VFreoXNqWT24skexf+5pJt5j+SS7Lw7qI/wV2/WFFTG7nE859aOU1MzN2qZ+r4R5CmEL00IonQUlPG7J2TiOlzr2/NbO3E02nzrXXovbjmntmFwM3LWT3fQqPLCAa4JwKeFnK6Xa/ANP+1Eun8MUZv1VfSHPukPy58AR4eIfmvw1qNGICAgwgICDKDCAgICAgICAgICAhK+NUmMiWKG540fxD/wHFPmss7q67WHH1W/0u6RM9qlvLBdc1ekOCxVkBhlG/Nrhva7kIRk6TVV6a5FdH5c2abaCVtBM4uiMkTjdk0Q2mnwgZtKmIlTWam1NzrzjqRiKhledlkT3E8gjcf4U9NU+jFq1FqmMzVH/ACnWiGgjw9s9YNkN4zITmSeQv5h0LLs6ac5lzO7b7RFM2rM8z6rc0foDLKHW4rDcnp5AsjU3YppxDUbJoq79+LkxxCb2WqfQYhTWtDFRNWcE03bTt2MvrnN3myUTLu/Dmlm1Ym5V/b/xTuMSbUziOQ28ylzG73YuaqqYeJGtEBAQEBAQEBAQYQEBAQEBAQEBBItCNIjQ1AcSeDfYSAcljk8eBe1mvp4lrNz0f6i3mnzU8w6lwbEWVELJWODg4A3BuFSuMS9tJe/yURnv6veqMt56ulZK3ZeLhWpqmns8L+novU9NcI/UaLG9432HM4fysujVREcw5rUeHaqp/wBdc4+7NPoub/GPuOZot+amvWZjiFbHhmInNypv6amZG0NYLAcyw6qpq5l09nT0WaeiiMQ0mmekjaGAkEGV4LYmdP1j0BVbjbNBXq7sR/WO6g8WrixrpHm7nEm53lxzJVY5l3etv0aPTTEfTEIS43N+fNWfNq6uuqap9RECAgICAgICAgIMICAgICAgICAgIJ1q41iS4W8RygzUzjxmX4zP7mX9StM8PKmzEV5j1dD4FpDS1sYkppmyAi9gbOHQWnMFVe9VqqnmY4bS6PPJdBhzgMzkhHPEIjpPp3TUoLISJ5eRrTdrT/c7+EnhudBst7U1ZqjFKoMbxiSd7qipfcnlOQA+q0cgVOZdrbtWNvs/SI9fqg2K15mdcZNHaj+VfDiN03GrV18eWHiRqhAQEBAQEBAQEBBhAQEBAQEBAQEBAQe3DMTmp3h8T3NP9ri38wjL02srs9+Y+kp7hWtWsYA105y/8rRJ+e9OW3tXNs1Hnp6Zbn4Ua1w4s0I6QwX/ADKZZ9va9sq5iv8A7afFdL6icfH1biPqh4a3zN3qvMs+3a2zTcxjKOVOOxNyYNs+YJFM95eOp8Q2LcYtcy0NbXPmN3HLkaNwV+HJazcburq/fPDzKGDHAiRAQEBAQEBAQEBBhAQEBECAiRAQEBECJEQXRLKIiqY7CGZkQESICAgICAgwgygICAgIMICAiBECAiwgICAiGUSIMIMoqIMICLMoCAgICAgyFOBhQCAgICDCAgIqIJnoBq9lxiOWSOoZBwD2xkPY597tvcWIsglXwDVX26H/AAv/ANonLPwD1X26H/C/rIZajSzVNLh1JJVy1kTmxAcRsTmlxJADQSd9ygYVqaxCekFTwkUbnt4SOneHbRBF27Thk0lBpdCNA5sTnnp+FFM+lA4QSML89stLbAjcQUGw071ZS4TTNqZKlkwdIIthsRYcwTe5ceZBA0SIJxoJq2mxaB88dRHCGSGLZfG55JABvcHpRVJfgGqvt0P+F/8AtA+Aaq+3Q/4X9ZBqtKNUcuH0ktXLWxObCL7DYnAuJIAaCTvJKJyrZEZZRLCJHGwuiFtUeo6eWNkgroxwjWvtwDjbaaDbtulDKs8bw40tTLTFweYJHRF4FgdnlA5ES8YVhgqoICAgIBYUGAEH6vgIF7g+BwKmB+RCYRKeatdYbcHjmjdTOn4d7ZLtkDNnZba2YN1CFwau9YjcYkljbTOg4BrXkukD77RI5ALbkG10+0rGFUoqXRGYGRsWwHhh4wOdyDzIKR1jazDi1OynZA6na2ThH3kD9qwOyMgLWJuiUvwbXTFHRsZPSzunjYI7RsHBvIAAdtE3aD4EHj1DVj6jEcQnkydM1srgOQulcbDwIJD7oP5sZ94Z6nIiFQaF6C1mKlxpw2OOPJ00twza+qLC5PqRLe43qjqaKB1RU1lMxjBc/KEk8jWjZzJ5kSautY4wimfA6lfPtyGXbEgZYFoFrEHmRVb2rvTwYwJi2nMHAFoO1IH32r8wHMg/fWHpo3CIY5nQmfhZOC2WvDLcUuvcg8yCnNYWs44vTNpIqZ0A4Rr33kEm3btWgAc+f4JHKKpimMy/XRLVBU1bRJUye9mOzDQ3aefPkFeacd2LRqZuT+yOExGoqht3VUX5/i/VsqjLp+6HaX6oKmjYZaaT3zG3MjZ2XtHOQN/4Iy7du3d4pnEqznYRcEWIR43LdVuemp2PgPcsHko/YCPJzFpjQcJitU1rwXvqHhsbWuc4uLrBoAGZRKS0upHEXsa4zQRlwBLHF5c2/IbC11IhmlWjv/HzGB9RFPI35QQbRDDyNcSN/QoS1cMTCLukDTzWJUwPycByG/SpHyqggwgIMhAurZAlVkW77nHums8lF7bkRKWe6B+am/eI/U5EOdSizsjCoGcBFxW/Js+iPqBFVW6qPnzFvHP7zkSnOnuigxWGKnc/g2NmbLKR2xa0Hit5ibjNEPTWVNFg1DtECGCnaGtY0Zk8jQOVxKDm3TnTSoxWfhJCY4mEiCAHJg5zzvPKfwQRvaPOfOUF1+5xOVZ40Xqcg9/ui+4qb7wf2nIILqcwBtTV8LILtiIDfGOZP4D1r2txiJlqtwrmuqjTx/buvzSHGYMOpH1M2TIWizW73E5Na3pJsF5TOWyt0RRTFMeilZteeIGXaZTwNjvlE7bc63S++/8ABQ9MLf0J0phxWkFRG3YIPBzRONyx4GY6RncFDso7XLo6ylqnOjFmyDhGjw3uPP61HaW4v41Gki9Pmp4l0LgXcsHko/YClpkc0b0CgpqyfEJbSzzyvfGSMomOO5t/pEbygjWtnWX702qGhd/UW2ZphuhBG5vPJbzKUwoJxJJJJJJJJJuSSbkk8pTCWFAyFORhQCDCAgICYBBb3uce6azyUXtuREpZ7oH5qb94j9TkQ50KLOzMJ7ni8mz2AiqqtVPz7i/jn95yCy9Jcfp8Pp3VNS7ZY2wAAu5zjua0cpKD4mjpcVorZSwVUeR6CMiOZwP5hBy1pbo7LhtW+lmudk7UclsnxntXD+ekFSlp1CF1+5x3Vnhi9TkGw90X3FTfeD+05BodQtW1r5Izv2w78C23rCyKObcw02sno1luue08LA1wYNNWYVIyAF743MnDBvcGG7gOc2v5ljtxEuYSbb8rZG+VvCpWdC6g8Fmp6KWaZpYKqQPja4WOw1tg63T/AAkko3r+q2mUMG9kYB8LnXA/JV9W6sR07dXM+s8LmwHuWDyMfsBS0jX0ml1HLXSYcyS88TdpwtkT9JoPK4ZEjpQQDXjoTw0f/JUzfjIhapY0dvGPp+Fvq8ClMKJBUpEGFUEBBhAQZsrAEyBVZFu+5x7prPJRe25ESlnugfmpv3iL1ORDnUphZ2XhPc8Xk2ewEVVXqq+fcX8c/vOQbH3QXzW37xH6nIIdqO0097y/8dUO+KndencdzJTvZ0B3r8KJlZGtTQwYpSXjA98QXfA7631oyeY+uyDmOSNzXFrgWuaS1zXCxBBsQRzoLo9zhurPGi9lyIbH3RfcVN94P7TkFN6LY6+hqWztzG57edt/WN69LdXTLF1mli/bx6x2dNaJ6W01dE10cjSbC7b536RyJXR6w8tPqZj9l3iYe6XRugfJw76SB0m/hDCwuvz3svNnROXh0q0vpcPiJe9pfbiRNI2r8lxyBGZptHVdnM8U+suZtLcefXTPleb7RLvy9XIpyydfqqaoi1b8tLq7Ae5YPIx+wFDVuYdLa+WmxupnhdsSRVTnsd0i2R5wd34qYWdGaI6SwYlQtqRYAtLZ2OI4jgLPa7o/gohQ2srQZ1FUOmpW7VLNtSsNw3gyAXvj2XEEkAFwAF9kHmQQ11DMBtGGUAAuLjE8CwzJvbd0qR9HDJ9l7zC8CIta/aY5ti4gNbYjedpuX9w51UZZhNQWlwhfYENtazruF22jPGdcZ3AKGXjIQytT4CcQ+1U36vVQyfATiH2qm/V6qGWfgKxD7VTfq9VTkyx8BWIfaqX9XqqDJ8BOIfaqX9XqoZeii1M4vASYMQhhLhZxiknjJHJfZbmhl+tXqgxqZuxNiUcrb32ZZZ3i/PYjehl4/gKxD7VS/q9VTky2TdVePAWGLAAZACoqQAOjJMmXnp9TuMRvdJHiMTHydu9ks7XOzvxnBtymUPqs1Q41M3YmxKOVt77Mss7xfnsRvUJy8Y1F4iLEVVMCMwRwoII3EHZ3oZbP4Lcf77D0ip/0hlrZdR2JPcXPq6dznHac5xlJJO8kluZQy9FFqbxiC/AYhFDtdtwUk8d7br7Lc0Ms1up7GZwGz4jHMAbhsss8gBta4DhvQy8nwFYh9qpv1eqpyZfrT6ksUjO1HWwMPOx0zT+TUiZhSqimrzQ9ztVePHfirfBw9QP4TKbcRR2eCbUjibzd9ZTuJ3lxmJ8+yoe9V+5VGJnh+Z1E4h9qpf1eqjxbNmqvHgABiwAGQAqKkADmAsictfNqPxJ7i99ZTvc43c5xlcSecktzKGXrwvVDjFM68FdAwE3cwPnax2VuM0AX/wDikeyt1Z45KHNdX04Y8WMQdOY7ce42XA5HhHflusLEFdqxxmYWdV0ocWta+T40udszmdpuWnZs83sMvwyEDDdV2LjL3xQ24otwUltlr+Ea0cXtRJx7c/Rkgy7Vdio29ieiaJh8eC2R3Ck24Rz7MA4xHIBYbuUkNPNqOxJ7i91XTFzyXuPxuZJuTkznJQX+gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIP/2Q==

Depois prosseguirei mostrar os efeitos do dispêndio de oportunidade. Você aprenderá como perder mais de R$ 2.500,00 em 5 anos ao fazer pequenos investimentos mensais. Você também verá como é possível perder meio milhão de reais em 30 anos investindo R$ 450,00 por mês na Poupança. Se o governo não interferir existe um detalhe de equilíbrio. Prosseguirei conceder um exemplo de mediação do governo que magra gente questiona e que finaliza gerando desemprego.

Nos momentos de crise as empresas passam a exigir mas qualificação, mais produtividade e simplesmente os melhores dos melhores conseguem sustentar o trabalho. Se o preço do trabalho fosse livre constantemente existiria trabalho para todo planeta. O preço do trabalho iria flutuar para cima ou para inferior dependendo da demanda e da oferta, porém o desemprego deixaria de subsistir.

Por consequência é tão importante investir na sua ensino. É essencial que exista uma compatibilidade entre o prazo que você cobija para manter o dinheiro transferido e essas tributações do IR. O fato é que as taxas estão tão elevadas que dependendo da taxa paga pelo CDB ou fundos, mesmo com a alíquota maior a poupança pode transpor perdendo.

Você diz que tem pânico de investir fora do Banco do Brasil. Esse pavor é resultado da falta de investimento na sua ensino financeira. Os bancos grandes tiram proveito disso. Eles oferecem rentabilidades ruins e taxas elevadas pois sabem que os clientes possuem pânico de investir fora de grandes bancos. Prosseguirei mostrar um exemplo onde você perde mas de R$ 300,00 por ano ao investir R$ 10 milénio na poupança graças ao dispêndio gerado pela rentabilidade real negativa.

A mediação no preço do trabalho. Como o preço do trabalho é tabelado pelo governo em R$ 880,00 (pagamento mínimo) isso gera uma consequência.

Existem vários simuladores cá. Posso investir 200,00 no Tesouro Selic que ainda cobra a taxa de custódia de 0,30 e retirar após um mês e conquanto teria rentabilidade maior que a poupança. Isso não tem relação com rentabilidade, mas se grao poupança digital existe um CDB e um RDB com a mesma taxa de juros e o RDB não tem liquidez, é mas interessante investir no CDB que tenha liquidez e ofereça a mesma taxa. Existem bancos menores que oferecem taxas maiores. É provável fazer investimentos em bancos menores através de corretoras sem a urgência de penetrar conta em numerosos bancos.

Para impedir evitar pessoas com salários miseráveis bastaria fazer a mediação correta e justa que seria motivar as pessoa a buscarem instrução, qualificação, aumento de produtividade. Se existe uma coisa que o governo deveria investir pesadamente é na educação. Se todas e cada uma das pessoa fossem educadas com total prioridade os gastos com segurança e saúde iriam despencar. Os gastos com programas sociais iriam despencar. É como a água e o esterco que as plantas precisam para crescer.

Eles transformam a taxa anual em taxa jornal e desse modo quanto mais tempo o grana fica acometido mais você recebe juros. Aqui no sítio temos variados simuladores. Temos um artigo onde falo sobre como perguntar taxas de várias corretoras e bancos.